
EXPERIENCES WITH CM/AVS TO VISUALIZE AND

COMPUTE SIMULATION DATA ON THE CM-5 (1)

Arsi Vaziri (2), Mark Kremenetsky (3), Matt Fitzgibbon (4), and Creon Levit (2)

Report RNR-94-005

NASA Ames Research Center
Mail Stop T27A-1

Moffett Field, CA 94035-1000
{vaziri, kremenet, fitzgibb, creon)@nas.nasa.gov

ABSTRACT

We have used AVS and its parallel implementation, CM/AVS, to create a distributed environment between a
Silicon Graphics IRIS Crimson workstation and a CM-5 Connection Machine parallel supercomputer from
Thinking Machines Corporation. This heterogeneous distributed system is used to visualize data generated
from simulations on the CM-5. CM/AVS modules have been developed to read, process, and visualize paral-
lel array data stored on the CM-5 Scalable Disk Array (SDA). The data are cast into CM/AVS fields, sent
through the local area network, and fed to local AVS modules running on the workstation. In addition, we
are developing a CM/AVS CFD module based on a 3-D time dependent flow solver. A distributed network
of CM/AVS and AVS modules is used to concurrently visualize the time varying flow field being computed
on the CM-5. We will show early results of using this distributed parallel computation/visualization environ-
ment for some current application codes. Examples of post processing CFD data and concurrent computa-
tion/visualization of time-varying 3-D flow fields are given.

(1). To appear in ProceedingsAVS'94, Boston, MA, May 1994.
(2). NASAppliedResearchBranch,NASA AmesResearchCenter,Moffett Field, CA 94035-1000
(3). ThinkingMachines Corp., NASA Ames ResearchCenter, MoffettField, CA 94035-1000

(4). Thinking Machines Corp., 245 First Street,Cambridge, MA02142-1264

EXPERIENCES WITH CM/AVS TO VISUALIZE AND COMPUTE
SIMULATION DATA ON THE CM-5

Arsi Vaziri (I), Mark Kremenetsky (2), Matt Fitzgibbon (3), and Creon Levit 0)

NASA Ames Research Center

Mail Stop T27A-1

MoffettField.CA 94035-1000

{vaziri, kremenet, fitzgibb, creon}@nas.nasa.gov

ABSTRACT

We have used AVS and its parallel implementation, CM/AVS, to create a distributed environment between a Silicon
Graphics IRIS Crimson workstation and a CM-5 Connection Machine parallel supercomputer from Thinking
Machines Corporation. This heterogeneous distributed system is used to visualize data generated from simulations on
the CM-5. CM/AVS modules have been developed to read, process, and visualize parallel array data stored on the
CM-5 Scalable Disk Array (SDA). The data are cast into CM/AVS fields, sent through the local area network, and fed
to local AVS modules running on the workstation. In addition, we are developing a CM/AVS CFD module based on a
3-D time dependent flow solver. A distributed network of CM/AVS and AVS modules is used to concurrently visual-
ize the time varying flow field being computed on the CM-5. We will show early results of using this distributed par-
allel computation/visualization environment for some current application codes. Examples of post processing CFD
data and concurrent computation/visualization of time-varying 3-D flow fields are given.

1. INTRODUCTION

An unprecedented increase in computational capabilities has enabled scientists to compute detailed numerical flow

fields. Simulations have progressed from 2-D, low-resolution, steady-state to 3-D, multi-zone, high resolution,

unsteady flow fields. Today, the large, unsteady CFD simulations at NASA's Numerical Aerodynamic Simulation
NAS (4)() supercomputer facility contain millions of grid points and are run for thousands of time steps. These simula-

tions produce many gigabytes of data[8][16]. Interactive visualization of such data in their entirety has been a formi-

dable task for visualization systems to date. Current CFD visualization systems generally deal with large datasets in a

post-processing mode[10]. Systems with user interaction are usually required to make a trade-off between the number

of time slices or the spatial resolution of the data in their representations.

Various models for post-computation visualization of data have been investigated a NAS, and this is still our domi-
nant mode of CFD data analysis and visualization. The extensive visualization facilities and systems for analysis of

computational fluid flow data range from virtual reality based systems[2], to cooperative visualization between multi-
ple workstations and a supercomputer[6]. Flow analysis toolkits FAST[17] and UFAT[I 1] are used extensively.
PLOT3D[18] has been in development and extensive use at NASA Ames for a number of years. It has contributed to
and influenced the development of other visualization tools mentioned above.

(1). NAS Applied Research Branch, NASA Ames Research Center, Moffett Field, CA 94035-1000

(2). Thinking Machines Corp., NASA Ames Research Center, Moffeu Field, CA 94035-1000

(3). Thinking Machines Corp., 245 First Street, Cambridge, MA 02142-1264

(4). NASA's Numerical Aerodynamic Simulation (HAS) facility is operated by the NAS System Division at Ames Research Cen-
ter, Moffett Field, California. One of the major objectives of NAS is to act as a pathfinder in the use of advanced computer systems
to solve computational aerosciences problems. To this end, NAS supercomputer center currently includes a 128 processor Think-
ing Machines CM-5, a128 node lntel iPSC/860, a 208 node Intel Paragon, two 16 processor Cray C-90s, a host of mid-range CON-
VEX systems, and several hundred Silicon Graphics workstations.The NAS supercomputer system provides about fifty
GigaFLOPS of computational power and links approximately 1400 industry, university, and government users in a high-speed net-
work.

.Whilethisenormousvolumeofdatamaybedaunting,thelevelsofdetailachievedinthe CFD simulations have pro-
vided intriguing opportumties. These highly detailed simulations have generated interest in integrated, interactive
processing of CFD results with concurrent data from laboratory experiments. Using interactive scientific visualiza-

tion techniques, scientists want to examine experimental and computational datasets side by side. This may reveal
hidden complexities in the two flow fields which may not be apparmt with traditional post-processing techniques.
Additionally, recent performance efficiencies achieved by parallel CFD codes[l 4] could make parallel computers a
viable alternative for this class of interactive fluid dynamics experiment/computation simulations.

The general motivation for the work presented in this paper is to experiment with an interactive visualization pro-
gramming environment for parallel computing. The specific motivation is to provide a means of visualizing CM-5
simulation data. The primary focus is on data from computational fluid dynamic (CFD) simulations. Visualization of

these data is significant due to a serious emergence of parallel computing as a promising computational resource for
CFD simulations at NASA Ames Research Center.

We discuss processing and visualization of 3-D, time-varying CFD data on a distributed system under the control of
AVS and its parallel extension CM/AVS. Parallel modules written with CM/AVS are executed on the CM-5 Connec-
tion Machine from Thinking Machines. These CM-5 modules are invoked as remote modules from the module tools
panel of AVS, which is run on a Silicon Graphics Iris Crimson workstation. Currently, the CM-5 and the SGI are con-
nected by Ethemet, and this will be upgraded to HiPPI (High Performance Parallel Interface) when it becomes avail-
able during the next few months.

As a visualization environment, CM/AVS supports interactive post=processing capabilities. However, it is also a dis-
tributed parallel computing environment where various scenarios for partitioning of the computations and visualiza-
tion on the CM-5 and the workstation could be considered. In this distributed system we have experimented with the
following two modes of processing:

1. Post-processing of parallel arrays stored on CM-5.

2. Tracking a 3-D, unsteady CFD simulation running on CM-5.

Simulation steering, where one would interact with an on-going simulation, can be built on top of our system as it
evolves in the future. Recently, visualization steering for a 2-D compressible flow over obstacles has been reported by
Woodward [19].

In our tracking application, partitioning decisions were usually dictated by the speed of the network connection
between the CM-5 and local workstations, forcing us to choose the least amount of data transfer across the network.

We are also restricted to performing rendering on the workstation since there is currently no supported graphics ren-
dering software available on the CM-5.

Although we used only two platforms in this distributed system, there are no difficulties in including additional AVS
platforms. At times, for example, a CONVEX platform running CONVEX/AVS was also included in our distributed
system. This configuration was used to test and debug remote module execution.

A brief description of the massively parallel CM-5 supercomputer is presented in Section 2. Section 3 provides
details of the current version CM/AVS, as well as a description of parallel arrays and their processing as CM/AVS
fields. In Section 4 we describe the modules that have been developed, followed by conclusions and discussion of
future directions in Section 5.

2. THE ENVIRONMENT

The CM-5 Connection Machine system was installed at NAS System Division, NASA Ames Research Center in
1993. Detailed descriptions of NAS computing environment and networks have been given elsewhere[13]. However,
a brief description of the hardware and software characteristics of the CM-5 at NAS will be presented below as back-
ground.

2.1 The Hardware Environment

The CM-5 system at NAS consists of 128 computational nodes with vector units 0/U), Scalable Disk Array (SDA) of
48 disk drives, 4 Control Processors (CP), an Input/Output Control Processor (IOCP), and HiPPI channels. The CM-
5 contains three kinds of processing nodes:

• Computational processor nodes (PN)

• Control processor nodes (CP)

• I/O control processor nodes (IOCP)

All three are based on 32MHz SPARC microprocessors. In the case of the PNs, each SPARC is supplemented by four
Vector Units (VII), which exo:ute vector-based arithmetic operations and provide a high-bandwidth path to the mem-
ory on each node.

The CM-5 architecture uses three independent networks to connect all components of the system[3]:

• Data Network that is the primary data communication network for point-to-point communication.

• Control Network that supports cooperative global operations including broadcast, reductions, scans, and syn-
chronization.

• Diagnostic Network for testing for hardware failures.

Table 1 summarizes some performance characteristics of the CM-5 node.

TABLE 1. Performance characteristics of the CM-5

Peak 64 bit floating point arithmetic 128 arith.instr. Mops/node

Memory range/node 32 Mb

Minimum latency 0.275 micro sec

Hardware Bandwidth 20 MB/s

Application Latency < 3.0 micro sec

The CM-5 has a scalable I/O system which simultaneously supports Unix-compatible operations and scalable high-
performance, parallel I/O operations. There is also a complete family of I/O devices such as: LAN Interface, Ethemet,

FDDI Interface, Scalable Disk Array (SDA), and HiPPI. An important member of this family, SDA, is a very flexible
RAID system. The SDA is extensively scalable in both capacity and bandwidth (e.g. the SDA system at NASA Ames
has 25 GB capacity and provides about 75 MB/s bandwidth). HiPPI is supported on the system through a directly
connected HiPPI subsystem.

2.2 The Software Environment

The CM-5 operating system (CMOST) is based on SunSoft's Solaris (SunOS) operating system and is fully UNIX
compatible. Thinking Machines extensions support parallel, time,shared interactive processes, reconflguration of
nodes into various-sized partitions, and parallel FO devices.

There are three ways to create a scalable parallel application on the CM-5:

1. Write the application in a "data parallel language". Available languages are: C*, CM Fortran, and *Lisp.

2. Write a message-passing program where all communication for transferring data between nodes is under

explicit control of the programmer. The native message-passing library on the CM-5 is CMMD.

3. Use a translator (e.g., CMAX) to convert a scalable FORTRAN77 program into a CM Fortran program.

Program development is also aided by an integrated graphical development environment called PRISM which
includes a multi-language debugger with performance statistics gathering and reporting capabilities. In addition, the
CM Scientific System Library (CMSSL) is a parallel library of high- performance mathematical and communication
software, optimized for the CM-5 architecture.

Two visualization libraries are available for the CM-5: CMXI 1 and CM/AVS. Both are designed to integrate very
large parallel data sets produced by CM-5 computations into standard serial visualization environments. In the next
section we describe the CM/AVS.

3. CM/AVS: A PARALLEL AVS LIBRARY

CM/AVS, from Thinking Machines Corporation[4], extends the Application Visualization System (AVS)[I] to oper-
ate with parallel data on the CM-5 supercomputer. Based on the data parallel languages C* and CM Fortran, it intro-
duces a parallel field which maps naturally into these languages.

CM/AVS is implemented as a set of libraries which are linked in before the standard AVS libraries. These libraries
provide access to the parallel communication system, replace some AVS functions, and a add handful of new

CM/AVS functions. The system also includes a library of parallel AVS modules which can be used to process fields
on the CM-5.

In a typical use of CM/AVS, an unmodified AVS kernel is run on some local workstation. Some modules are also run
on this workstation, while others are compiled With CM/AVS and run remotely on the CM-5. These remote CM-5

modules behave identically to any other remote AVS modules; the user is free to mix serial and parallel modules. In
the current NAS applications, AVS is run on an SGI IRIS Crimson workstation, and communication with the CM-5
uses an Ethernet connection.

3.1 Parallel Fields

A data parallel language such as C* or CM Fortran exploits parallelism by applying the same operation to many data
elements on many processors simultaneously. Data elements are aggregated into parallel variables in C* and parallel
arrays in CM Fortran (for convenience, we will use "parallel variables" to refer to both of these aggregates). Parallel
variables are multi-dimensional Cartesian grids, so there is a very natural mapping between these data structures and
AVS fields.

A single bit in the AVSfield structure is set to indicate that the field is parallel. The functions in the CM/AVS library
examine this bit and dispatch to the appropriate serial or parallel routines. This allows functions such as C_VS-
f £eld_reset_minmax to operate correctly for serial or parallel fields.

This bit can be set either by calling CMkVSdata_alloc tO allocate a parallel field or by using the new PARALLEL
flag in kVScreate_input_port. For example:

iport = AVScreate_input_port(ninput field n ,Ufield 2D

4-vector byte u,

REQUIRED I PARALLEL) ;

will allocate a parallel field to hold an image that arrives on the module's input pon.

The data member of a parallel field is simply a pointer to a parallel variable on the CM-5. If the parallel field is recti-
linear or irregular, another parallel variable will hold its coordinate mapping array. To access pointers to these parallel
variables, we add several new CM/AVS functions. For example, Cl_vS field_data_get takes an AVSfield
structure as input and returns a pointer to the parallel variable on the CM-5.

In C*, such a parallel variable must also have a shape that describes how the data are spread across the processor
nodes and provides context flags which can be used to restrict operations to an arbitrary subset of the data; for C* we
add CMAVS field_alloc_data_shape to allocate this shape.

In CM Fortran, pointers are not available. So, using a mechanism similar to that of AVS field_data_of fset, we
construct a serial array which contains all the information needed to point to the parallel array. This serial array is
then passed to a second Fortran function, which can operate as if it had been passed a parallel array.

To give an idea of how CM/AVS modules are written, Figure presents a simple module which computes the lumi-
nance of an image on the CM-5.

3.2 Communication

To transfer fields, CM/AVS depends on the direct module-to-module data transfer mechanism of AVS. It contains a

new parallel communication layer that manages the conversion between parallel fields and those expected by stan-
dard AVS modules. This layer also uses the most efficient transport available to send data from one module to
another. As in any other AVS module, the choice of transport is completely hidden from the module writer.

The most direct and efficient method of communication is available when CM/AVS modules are running in the same
process. A parallel field can then be transferred from one module to another by a simple pointer copy. While this is
obviously very fast, it is restricted to subroutine modules and requires that the modules be written so that they can
cooperate.

All other communication methods are accessed through parallel sockets. Parallel sockets are optimized for transfer-
ring large amounts of data to and from the CM-5 using standard protocols such as TCP/IP. They are accessed with
special system calls, such as CM_read, that accept a standard UNIX file descriptor (opened in the conventional man-
ner), a pointer to parallel memory, and the number of bytes to be read or written.

Parallel sockets provide a layer of abstraction which allows CM/AVS to operate efficiently in many different hetero-
geneous computing environments. We discuss three example transport mechanisms, in order of decreasing band-
width.

int

luminance_compute(AVSfield *in,

[
shape Image;

Byte:void *in_data, *out_data;
int result, dims[2];

AVSfield **out)

/* Set up the weights for NTSC luminance */
float red_weight = .299, green_weight = .587, blue_weight-

/* Get pointers to the arrays containing AVS field data

result = AVSfield_get_dimensions(in, dims);

Image - CMAVSfield_alloc_data_shape(in);
in_data - CMAVSfield_data_get(in, Image);

/* If there is already output data,

if (*out != 0)

AVSdata_free(Ufield W, *out);

deallocate it. */

*out z CMAVSdata_alloc(_field 2D scalar byte n, dims);

with (Image) {

/* Get a pointer to the output data */

out_data = CMAVSfield_data_get(*out, Image);

/* Copy the points from input to output */

result = CMAVSfield_copy_points(in,*out);

/* Compute the luminance */
*out_data = in_data[l] * red_weight

in_data[2] * green_weight +

in_data[3] * blue_weight;

]
deallocate shape(&Image);

/* Return 1 to indicate success */
return i;

.114;

*/

FIGURE 1. A C* CM/AVS module to compute the luminance of an image

If two modules are running in different processes on the same CM-5 partition, they can be connected by a socket that

uses the CM-5 Data Network. Since the source and destination processors are the same for each piece of data, this

amounts to copying data through the kernel and is quite fast.

CM/AVS can also take advantage of HIPPI networks. A user need only make the appropriate entry in his AVS hosts

file, so that the remote connection is made over this HiPPI connection.

Finally, if an Ethernet connection is available between the workstation and the CM-5, CM/AVS will use parallel sock-

ets to transfer data over this connection.

3.3 CM/AVS Modules Under DJM

The Distributed Job Manager (DJM) provides job scheduling, resource management, and accounting services. It is
available on many platforms, including the CM-5[15].

Users submit jobs to DJM queues by using the jsub or jmn commands. These commands ask the user to specify the

resources (memory, time, etc.) that the job requires. When the resources become available, DJM schedules the job for
execution.

Recall that remote AVS modules are executed by rsh[1]. The particular rsh command to be used is specified in the
second field of the user's AVS hosts file, and this command is prefixed to each module invocation. To submit a
CM/AVS job to a DJM queue, we use a level of indirection. We modify the rsh command to run a script instead of

executing the module direct/y. This script executes the appropriate jsub orjnm command to submit the module for
execution. The script may even take conditional action (for example, it is not usually necessa._ to submit the AVS
list_di.- process to a DJM queue).

Because DJM requires specification of resources when submitting a job, it is not immediately clear how one should
sub ._.t an interactive job. If a user is intemctively explorine a data set and usine a broad palette of modules which are
combined into a single process, the amount of time required for a CMIAVS job will not be known ahead of time. To
address this issue, some sites create a special interactive queue where jobs are allowed to execute for many hotu"s
before being removed.

4. VISUALIZATION OF SIMULATION DATA

In our approach to visualiza_ion of data in a parallel computing environm_t such as CM-5, we have included post-
processing of daza and track.ing of simulations. Both of these have been accomplished through CM)'AVS in a distrib-uted environment.

4.1 Saturn Ring Data

Our f_st a.pplica_on to t_t our s)'stem was a module to read and visualize a dataset consistine of the orbital positions
aria veloc_ues oz an n-tx_ay simulation problem of the Saturn rin_ "Hill's problem" is the m_tion of a test particle L.n
the gravity field of a central body (Saturn, in our case) and one or more permrbers (Saturn's moons). The computa-
tions were performed on the CM-5 at NAS[5]. The test particles represent "ring p_icles" or "moonlets" embedded i,n
the F-ring re, on of Saturn. "I'ne F-ring is the next-m-outermost ring of saturn - the one with the interestinz "'kinked"

and "braided" structures that were observed by "vbyager 1 (and gone by the time Voy_er 2 arrived). Sa_ is simu-
lazed as an oblate planet, and the perturbers as point masses. The test particles (8000 of them) are "'massless" and do

not effect each other. The simulation is three-dimensional and is done in double precision. A par_lelized Bulirch-
Szoer integration scheme is utilized. At each timestep, it inte_a_a_esusing several different step sizes and then extraz_o-

lutes to an infinite number of infinitely small steps."Shadow" trajectories are computed, one for each test panicle, to
generate Liapunov exponents. Each massive body is taken s_uentiallv. Its effect on all other bodies (massive and
massless) is computed in parallel. " "

FIGURE 2. Saturn Data: an AVS network and a scatter diagram of
particle positions.

7

Data(x,y,z,a,vandw)representingpo'sitionandvelocitycomponentsforeachparticleareoutput to the SDA approx-

imately every 100 orbits. Runs of over 105 o_its have been computed.

"v_ualizations consist of 2-D plots and 3-D scatter plots of orbital elements (semi-major axis, eccentricity, inclina-
tions, etc.), changing with time. Fi_mare2 shows the network and a scatter _ of the particle positions.

4.2 Post-Processing PLOT3D Data

CFD data at NASA Ames are usually written in a PLOT3D format[t8]. For parallel a,'ra_ on the CM-5 an appropri-
ate PLOT3D format had to be defined. Efficient parallel IJO operations were considered in the design of the CM:AVS
module which would read the pre-computed CFD data gored on the CM-5 SDA. Our initial implementation of the

parallel PLOT3D reader can only handle sin_e block data at _ time. We plan to expand this module to read multi-
block datasets. The module is useful for static interrogation of precomputed data. Many AVS modules for CFD anal-

ysis are available once the paralJel CM/AVS field containing values of density, velocity components, and pressure
have been read from the SDA. A density isosufface from a parallel PLOT3D dazaset is shown in Figure 3.

FIGURE 3. PLOT3D data: Density isosurface for flow around cyfinder.

4.3 Simulation Tracking

We are interested in solving a class of 3-D tmsteady flow problems for which the simulations are fast enough tha: the
data transl," and visualization can be performed at interactive rates. We have found that as long as the solution con-

tinues to change at a rote of one frame every few seconds, visualization tracking can be quite useful. ClearIy. there is
a class of problems that are too large to be dealt with effectively in the environment we have described here. The
problem arises from both the current limitations in computer and networking technologies, and the inability of a data
flow visualization environments to adequately and efficiently process transient ttow data[7][12].

We have used the parallel CFD solver "cm3d". developed by Jesperson & Levit at NASA Ames[9]. for our computa-
tions. Cm3d is a compressible Navier-Stokes sotver for use on multiple overlapping three-dimensionaI structured cur-
viiinear grids. It uses centered d'ffferences _nd non-linear artificial dissipation on the right-hand-side and a factored
implicit scheme for the leg-hand-side. The factored implic_ scheme can solve either scalar tridl_onal, scalar penta-
diagonal, or block-tridiagonal systems. "Inks code has been used to compute unsteady t/tree-dimensional low

Reynolds number flow past a tapered cylinder. The spanwise variation in natural shedding frequency results in inter-
esting three-dimensional flow phenomena. The computed hot-wire and spectral data are very similar to experimental
results[9]. The computations highlight the capability of CM-5 for numerical simulation of three-dimensional
unsteady flow fields.

The cm3d solver has been made into a CM/AVS module and is used in the simulation tracking experiments. In our 3-
D, unsteady flow simulation we cannot modify the simulation as it progresses, but we are able to start, stop and restart
the simulation. Through an AVS file browser, we can chose the number of time-steps it is to run and the input data file
to be used. In Figure 4, we show the complicated structure of a density isosurface from a simulation of the unsteady

flow past a tapered cylinder.

FIGURE 4. Density isosurface for an unsteady flow past a tapered cylinder
in a simulation tracking experiment.

Our initial test problems are a single zone, 131,072 point (64x64x32) flow past a tapered cylinder and a 4 zone
909,312 point jet problem. At this stage, we are only able to visualize a single grid of a multi-zone calculation in
progress. In order to get a reasonable transfer time, the data for visualization are subsampled at the source. We have
had to hard-wire a down-sizing routine inside the CM/AVS solver module for efficient subsampling. The subsampling
requirement should not be necessary once we begin using a HiPPI channel for communication.

We have be_n to define a class of computation/visualization problems which are of si_ificant size (in the number of
grid points or the number of dimensions) but yet are small enough that we can deal with them effectively in a distrib-
uted environment.

5. CONCLUSIONS

This paper has described the successful initial implementation of an interactive distributed data-flow visual parallel

tool. Our experience during this initial phase of working with CM/AVS has indicated the following:

• A data-flow visual programming interface, such as AVS, can be an effective visualization/computation tool on

a parallel computer such as the CM-5. It provides a workable platform to develop new visualization techniques
for unsteady flow simulations.

• Simulation tracking and simultaneous computation/visualization is achievable for non-trivial problem sizes of

computational interest.

9

• ImprovemenLs innetwork speedsareneeded toeffectivelytransmitthedam between heterogeaouscomputing

platforms. We must cun'ently use dam subsampling techniques to achieve desired interact_,e speeds.

• For, a limited probIem size domain, m time-dependent CFD simulations, the cost of recomputing is reasonaNy

low. Simultaneous recompurmffvisualizafion my be a viable altemazive to storage of large data sets and their
post processing. We will continue exploring the effectiveness of computation/visualization and use fast paral-
leI computation rates to lever_e development of new visualization tools. For example, a paraI!e] par,.JcIe
tracer is under development.

6. ACKNO_rLEDGMEN_I'S

We have greatly benefited _om discussions with Dennis Jesperson. Tom PullJam. and Horst Simon during the con-

duct of this research. This work was partly support_ through NASA contract NAS2-I3537.

7. REFERENCES

[1] AVS User's Guide, Advanced V'_ual Systems, Version 4, May 1992.
[2] Bryson, S. and C. Levit: The V'n-mal W'mdtmmel: An Environment for Exploration of Three-Dimensional

Unsteady Flows, Pro(:. IEEB'ACM SIGGRAPH V'mmlization "91, San Diego. CA. October 1991.
[3] CM-5 Technical Stunmm_-. Thinking Machines Corporation. 1992

[4] CM_AVS Users Guide. Thinking Machines Corporation, 1993.

[5] Cuzzi. J.. C. Levk. et al. "Simulation of a Moonlet Belt Under the Influence of Multiple Perturbers". Proc.

1993 Annual Meeting of the American Astronomical Society Division of Planetary Sciences, Boulder Colo-
rado, 1993.

[6] Gerald-Yamasald, M. J.: Cooperative V'mmlizat.ion of Computational Fluid Dynamics, Computer Graphics
Forum. 12(3), 1993.

[7] Globus, A.: Perspectives on the IRIS Explorer Visualization Environment.Report 1_NR-91-021, NAS Apphed
Research Branch., Moffett Field, CA. May 1992.

[8] Giobus, A.: A Software Model for V_ualization of Tmae Dependent 3-D CFD Results. Report RNR-92-03 i.
NAS Applied Resear:h Branch. Moffett Field, CA- Nov. 1992.

[9] Jesperson. D. C., and C. Leviu Numerical Simul_on of Flow Past a Tapered Cylinder. AIAA paper 9i-0751.
AIAA 29th Aerospace Sciences Meeting. Janllary 7-10, 1991. Reno, Nevada.

[10] Jordan, K. E.. M. D. Kremenetsky, and J. L. Richardson: V'mualizing Navier-Stokes Solutions Using the Con-
nection Machine. Proc. Seventh LMACS Iaternatiomal Conference on Computer Methods for PDE. New Jer-

sey. 1992.

[i 1] Lane, D. A-: VL_ualization of Tmae-Dependent Flow Fields, Vkcualization '93 Proceeding, 1993.

[12] Mayer, H. F.. and B. Tabatabai: V'u_aalizlng Results of Transient Flow Simulations. Visualization '93 Proceed-

ings,t993.

[13] NAS User Guide. NAS System Div., NASA Ames Research Center, Moffett Field. CA, i993.

[14] Simon, H. D., W. P,_Van Dalsem. and L. Dagam: P&-'allel CFD: Cm'rem Status and Future Requirements. In

Pm'altel CFD, k'npleme.r.tztions _d Results Using Parallel Computers. H. D. S_on (Ed.), The _ _ess.
1992.

[15] Using DJM on CM-5. Thinking Machines Corporation. version2.0. January I994.

[I 6] VazL-i, A.: Scientific Visualization m hiaria-speed network environments. Computer Ne:works and ISDN Sys-
tems. Vol. 22. 199 I.

[17] Wala!<a. P. P.. J. Claus. R. K. McCabe. T. PiesseI. and R. Potte._ FAST Use.- Guide. NASA Ames Research

Center, Moffet z Field, CA. July 1993.

l18] Wala:ka, P. P., P. G. Buning. L Pierce. and P. A. F/son: PLOT3D User's .Manual. NASA A:nes Research Cen-

ter, Moffett Field. CA. July i992.

l19] Woodward. P. R.: k'a:eracttve Scientific _sualization of Fluid Flow. Computer. %'0".26. No. 10. October 1993.

10

